guest author

Dubious Quick Kill - Part Five

WOUNDS TO THE MAJOR BLOOD VESSELS OF THE NECK

The aortic arch branches into arteries that service the upper body, including the head. Of these, the left and right common carotid arteries are of significant interest with regard to dueling practice because these vessels supply the larger share of blood to the brain and because they extend unprotected, in the neck, on either side of the windpipe(trachea). While these arteries are not externally visible, one can understand why a stroke delivered to the neck with an edged weapon such as a sabre, or thrust with an edged smallsword or rapier, would seem to be an effective means of incapacitating an adversary. Certainly, the severing of a common carotid artery will immediately terminate a large portion of the blood supply to the brain. Nevertheless, the victim of such a wound may remain conscious for from fifteen to as many as thirty seconds; a more than ample amount of time for a dying swordsman to execute a number of cuts, thrusts and parries.

In addition to the carotid arteries, the neck also encompasses the jugular veins, which return blood from the brain, face, and neck to the heart. While the escape of blood under high pressure is a concern for wounds to the vessels of the arterial system, wounds to the jugular veins pose a different problem. By the time blood reaches these vessels, its pressure is nearly zero. In fact, during the inspiratory phase of the respiratory cycle, when contraction of the diaphragm and intercostal muscles creates a negative pressure within the thorax, pressure in the jugular veins also falls below zero. As a consequence, an opening in the jugular vein which communicates with the external environment may allow small bubbles of air to be entrained into the vessel. As the air enters, a bloody froth can be produced which, when drawn into the heart, may render the pumping action inoperative (valve lock). Whereas a severed vein is not usually considered to be as serious an injury as a severed artery, air embolism due to a cut jugular vein may cause a victim, after one or two gasps, to collapse immediately.

...clearly for the duelist hitting before being hit is not at all the same thing as hitting without being hit.

As the neck encompasses the cervical spine, carotid arteries, trachea, and jugular veins in a relatively small space, a sword-thrust to this area would seem very likely to sever or impale a vital structure and disable an adversary almost immediately. And so it was, during the reign of Louis XIII, for one Bussy D'Ambrose who was run through the throat while acting as a second for the Marquis de Beuvron. The chance of combat, however, is a fickle companion to the duelist, as Sir Hatton Cheek discovered in 1609 in his duel with Sir Thomas Dutton. Each, armed with rapier and dagger, met the other on the sands of Calais. On the first pass Cheek directed a dagger thrust to Dutton's throat, close to the trachea, and ran him through. One may imagine with what surprise Cheek found that the wound proved to be entirely ineffective. In fact, despite the seemingly serious nature of his injury, it was Dutton who concluded the combat by running Cheek through the body with his rapier, and then stabbing him in the back with his dagger. If we are surprised at Dutton's ability to continue the combat, it is with horror that we find that Cheek, after having been so grievously wounded, not only failed to drop to the ground, but continued on with the combat, gathering enough strength to rush yet again upon his adversary. The conflict continued until Dutton, noticing that Cheek began to droop on account of massive blood loss, wisely adopted a defensive strategy, keeping his distance until Cheek finally collapsed from loss of blood.

WOUNDS TO THE MAJOR ABDOMINAL BLOOD VESSELS

Within the abdominal cavity are found the abdominal aorta and its two major branches, the common iliac arteries; and their venous counterparts, the inferior vena cava and the common iliac veins. These vessels are large, relatively speaking, and they confine blood under end-systolic pressures similar to those found in the major thoracic arteries. All of these vessels are located in close proximity to the spinal column and lie behind the bulk of the abdominal viscera.

In the present-day United States, wounds delivered by thrusts or cuts from a sword are almost entirely unheard of; knives are by far the most common weapon involved in stabbings. Obviously, the depth to which a knife may penetrate the abdominal cavity is less that that for the blade of a sword. It is important to bear this point in mind with respect to a finding that less than half of all stab wounds do any serious injury to the abdominal viscera. Longer blades might well increase the morbidity and mortality of such injuries.

Wounds to the abdomen which do prove fatal usually involve the large blood vessels and/or the liver, which is a highly vascular organ itself. The rate of blood loss from even a grievously wounded liver is not likely to be sufficient to cause sudden cardiac collapse, however, since the vascular resistance within this organ is very high. Complete transection of the abdominal aorta could be expected to incapacitate a duelist relatively quickly, but some degree of good fortune would be required to introduce the blade in such a way as to impale this relatively narrow structure within the bulk of the abdomen, or draw the blade's edge along the artery's wall to transect it.

A sabre stroke would certainly be an effective means of severing the major abdominal arteries and veins, but because they are located against the vertebral column, the stroke would have to be made with considerable violence in order to pass the blade through the skin, the underlying abdominal muscles, and the viscera situated in front of the vessels. Were such a stroke delivered, violating the integrity of the large vessels would be a moot point in any case since the sudden loss of intra-abdominal pressure and the attendant cardiac return would induce immediate cardiac collapse. For a cutting action to do so much damage the type of sabre would be an important consideration. While a heavy cavalry sabre with a curved blade would have sufficient mass and dynamics to yield the necessary force, a cut delivered to the abdominal wall by the lighter and shorter dueling sabre with a straight rather than a curved edge would likely prove inadequate to the task and could leave the adversary still capable of posing a serious threat.

WOUNDS TO THE BLOOD VESSELS OF THE UPPER LIMBS

Although relatively far removed from the heart, the arteries of the arms are still of sufficiently low vascular resistance to carry blood under pressures similar to those found in the greater thoracic arteries. Of the major arteries of the arm, the brachial artery is the largest and lies along the medial surface of the bone of the upper arm (humerus). As it descends, it progressively courses anteriorly to the crook of the arm, where it is well exposed to a sword-thrust or cut. From the crook of the elbow it divides into the ulnar and radial arteries. Wounds to any of these vessels can be extremely life-threatening, especially if the vessel is only partly severed, since the muscular walls of a completely transected artery will naturally retract and impair the rate of hemorrhage. Incisions in the radial artery are a well-recognized cause of death in suicide victims. Nevertheless, because of their relatively smaller diameters, immediate incapacitation due to blood loss from the severing of these arteries cannot be expected.

The veins of the arm are far more numerous than the major arteries. They are significantly more narrow and intravenous pressures are normally less than ten millimeters of mercury. As a consequence, incisions or even complete transections of these vessels can be expected to result in no immediately serious consequences.

WOUNDS TO THE BLOOD VESSELS OF THE LOWER LIMBS

Much like the arms, the legs each are serviced by one large artery which divides into two major branches. The femoral artery lies in front of the hip joint and descends along the medial surface of the thigh bone, (femur). Unlike the brachial artery, however, the mid and distal portion of the femoral artery is not altogether vulnerable to the blade of the duelist. As it approximates the knee joint it spirals around the femur and passes directly behind the knee in the form of the popliteal artery, which subsequently bifurcates to become the anterior and posterior tibial arteries.

Like the arm, the leg is laced with a complex network of veins. Most of these are relatively narrow and deep and the pressure of blood confined within these vessels is low. The rate of blood flow through these vessels is relatively slow and wounds severing one or more of them cannot be expected to result in consequences of any interest to the duelist.

Cuts or thrusts to the major arteries of the legs can be serious enough to cause death. Nevertheless, an adversary seriously wounded in a femoral artery ought still to be considered an extremely dangerous adversary because blood loss is unlikely to be so rapid as to result in immediate collapse. In the last of the judicial duels fought in France in 1547 between Francois de Vivonne, Lord of Chastaigneraye and Guy de Chabot, the oldest son of the Lord of Jarnac, Chastaigneraye was wounded by cuts to the back of the knee of both legs. Hamstrung, Chastaigneraye lay helpless on the ground while a lengthy exchange of words followed between him and his adversary. Jarnac offered to spare Chastaigneraye if he would admit that his accusations, over which the trial took place, were in error, but Chastaigneraye refused to recant and Jarnac, loth to take his opponents life, pleaded with the attending monarch, Henry II, to intervene and save Chastaigneraye's life. Initially, the king refused to interfere, however. Hemorrhaging uncontrollably from at least one artery, Chastaigneraye remained upon the ground while Jarnac continued to plead back and forth with both Chastaigneraye and the king to end the combat. After Jarnac's third appeal, the king finally interceded, but Chastaigneraye's pride had been mortally wounded. Refusing to allow his wounds to be treated, he finally succumbed after "a little time" from loss of blood.

It is important to note that Chastaigneraye was considered to have been a swordsman of extraordinary skill as well as an excellent wrestler. Following the cutting stroke to his leg, the extended period during which he lay hemorrhaging to death was certainly of sufficient length to have afforded him a number of thrusts, strokes and parries. Had the slash to the backside of his right leg not crippled him, Chastaigneraye might well have been the victor in this combat, severed artery notwithstanding.

SUMMARY

In conclusion, fencing tempo is a vital element of swordsmanship, but clearly for the duelist hitting before being hit is not at all the same thing as hitting without being hit. Exsanguination is the principal mechanism of death caused by stabbing and incising wounds and death by this means is seldom instantaneous. Although stab wounds to the heart are generally imagined to be instantly incapacitating, numerous modern medical case histories indicate that while victims of such wounds may immediately collapse upon being wounded, rapid disability from this type of wound is by no means certain. Many present-day victims of penetrating wounds involving the lungs and the great vessels of the thorax have also demonstrated a remarkable ability to remain physically active minutes to hours after their wounds were inflicted. These cases are consistent with reports of duelists who, subsequent to having been grievously or even mortally wounded through the chest, neck, or abdomen, nevertheless remained actively engaged upon the terrain and fully able to continue long enough to dispatch those who had wounded them.

FIN


Dubious Quick Kill - Part Four

WOUNDS TO THE HEART

Because exsanguination is the leading and most frequent cause of death in stabbing and incising wounds, it is not unreasonable to direct our attention initially to wounds to the cardiovascular system and further, to consider the evidence provided by the medical records and coroners reports of the current era. Let us first begin with a brief review of human anatomy. In an adult, the heart is approximately twelve centimeters long, eight to nine centimeters wide at its widest point, and some six centimeters thick. It is encased in a membranous sack, the pericardium, and rests on the upper surface of the diaphragm, between the lower portions of the lungs and behind the sternum. The organ is divided into four chambers: the left and right atria and the left and right ventricles. It is comprised almost entirely of muscle, and serves a vital function as a pumping mechanism to distribute blood throughout the body. It is unattached to the adjacent organs, but is held in place in the chest cavity, suspended by the pericardium and by continuity with the major blood vessels. The muscular walls of the heart are supplied with blood by the the right and the left coronary arteries, each of which bifurcates into a series of subdivisions.

...stab wounds, similar to those that might be inflicted by a thrust with a sword with a narrow, pointed blade may leave a mortally wounded victim capable of surprisingly athletic endeavors.

Because the heart is a vital organ, it is generally thought that a serious injury to the heart will result in instant death. Consequently, it is not unreasonable to suppose that the duelist expected a thrust to his adversary's heart to disable him immediately. While swordplay done in earnest is now a thing of the past, a wealth of information regarding stab wounds to the heart has been accumulated in recent times by the practitioners of modern forensic medicine. Many of these wounds have been inflicted with instruments very much like the blades of rapiers, sabres, and smallswords and the means by which such wounds have been treated, combined with assessments of the injuries through the sophisticated discipline of forensic medicine, reveal some surprising truths with which many duelists most certainly had to deal.

While a stab wound to the heart is a grave matter, numerous instances of penetrating wounds to this organ have been documented in which victims have demonstrated a surprising ability to remain physically active. In 1896 a case was reported in which a twenty-four year old man was stabbed in the heart. Despite a wound to the left ventricle which severed a coronary artery, the victim not only remained conscious, but was also able to walk home. Much later, in 1936, a paper was presented to the American Association of Thoracic Surgery in which thirteen cases of stab wounds to the heart were cited. Of these, four victims were said to have collapsed immediately. Four others, although incapacitated, remained conscious and alert for from thirty minutes to several hours. The remaining five victims, thirty-eight per cent of the total, remained active: one walking approximately twenty-three meters and another running three blocks. Yet another victim remained active for approximately ten minutes after having been stabbed in the heart with an ice pick, and two managed to walk to a medical facility for help. In another instance a report cites an impressive case of a man stabbed in the left ventricle. Despite a wound 1.3 centimeters in length, the victim was able to continue routine activity for some time and lived a total of four days before expiring. In 1961, a survey conducted by Spitz, Petty and Russell included seven victims stabbed in various regions of the heart. While none of these people expired immediately, some were quickly incapacitated. Five were not, however, and one victim, despite a 2 centimeter slit-like "laceration" located in the left ventricle, managed to walk a full city block. After arming himself with a broken beer bottle, the victim finally collapsed while in the act of attempting to re-engage the individual who stabbed him.

The amount of time elapsing between a stab wound to the heart and total incapacitation of the victim is dependent upon the nature of the wound and which structures of the heart are compromised. In the light of the cases cited in the preceding paragraphs, one may expect that a penetrating wound to the left ventricle, such as that which would be inflicted by a smallsword, may not necessarily bring a combat to a sudden conclusion. Blood in this chamber of the heart, at the end of ventricular contraction (end-systole), may reach pressures as high as one hundred twenty millimeters of mercury or more, especially during combat, and one might reasonably expect blood under such pressure to escape readily through a breach in the ventricular wall. The walls of this chamber are comprised almost entirely of muscle tissue, however, and are exceptionally thick. As a consequence, the left ventricular wall has the potential to seal itself partially through the contraction of the muscle tissue immediately surrounding the site of the wound. While the end-systolic pressure in the right ventricle normally amounts to only eighteen percent that of the left, wounds to the right ventricle are far more likely to be quickly fatal because the thickness of this ventricular wall is only a third that of the left ventricle and is, consequently, less able to close a wound.

With respect to penetrating (stabbing) wounds to the heart the location, depth of penetration, blade width, and the presence or absence of cutting edges are important factors influencing a wounded duelist's ability to continue a combat. Large cuts that transect the heart may be expected to result in swift incapacitation due to rapid exsanguination, and immediate loss of pressure, but stab wounds, similar to those that might be inflicted by a thrust with a sword with a narrow, pointed blade may leave a mortally wounded victim capable of surprisingly athletic endeavors. Knight cites a case of one individual who, stabbed "through" the heart, was still able to run over 400 meters before he collapsed. Yet two more striking cases are also reported of victims who survived wounds to the heart, one of which is described as, "a through-and-through stab wound of the left ventricle that transfixed the heart from front to back."

WOUNDS TO THE MAJOR THORACIC BLOOD VESSELS

The vital area located in the center of the chest is not occupied by the heart alone. The large thoracic blood vessels converge with the heart in such a way as to present an area nearly equal in size to that presented by the heart. Consequently, a sword-thrust that penetrates the chest but fails to find the heart may nevertheless pierce or incise one or more of these large vessels.

Normally, blood pressure in the major arteries located in the chest (thorax) averages approximately one hundred millimeters of mercury, with a maximum pressure of some one hundred twenty millimeters at end-systole. Subdivisions of the aorta greater than three millimeters in diameter offer little vascular resistance. Consequently, the average blood pressure in these vessels is nearly the same. Since the thoracic arteries confine blood under considerable pressure, and because the walls of these vessels are relatively thin, compared to the walls of the ventricles, punctures or cuts in these vessels may allow blood to escape quite rapidly, depending on the size of the opening. The major thoracic arteries then, are more vulnerable to stabbing wounds than are the ventricles of the heart. While a good deal smaller in diameter, a puncture or severing of the coronary arteries, because they supply blood to the walls of the heart's ventricles, may also result in rapid incapacitation of a duelist. Forensic pathologists Dominick and Vincent Di Maio point out that especially vulnerable is the left anterior descending coronary artery which supplies the anterior wall of the left ventricle. Stabbing wounds which transect this small vessel may be expected to result in sudden death.

Nevertheless, cases have been reported in which stabbing victims, whose thoracic arteries were penetrated, remained physically active for a surprisingly long period of time. An example may be found in the case of a twenty-three year old man who was stabbed in the chest with a kitchen knife. At autopsy a wound tract was disclosed that penetrated both the aorta and the left ventricle. Blood issuing from these wounds into the chest cavity amounted to a volume of two liters. Despite the serious nature of his wounds, the victim nevertheless managed to walk more than 100 meters before collapsing and remained alive until shortly after he had been taken to the hospital. Another example is that of a twenty-five year old man whose subclavian artery and vein were severed by a thrust delivered by a kitchen knife. Losing a total of three liters of blood, he was able to run a distance of four city blocks before finally collapsing.

next time, more wounds!